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1.  Introduction and summary W 

In this thesis we will deal with selection procedure 1 

problems involving multivariate normal populations.  These 

problems are of two distinct types:  The first involves k 

bivariate normal populations, where the goal is to select the 

"best" population.  The second involves one (k+1)-variate nor- 

mal population, where the goal is to select the "best" set of 

a preassigned number of variates.  Our major interest will 

center on problems of prediction and hence the "best" popula- 

tion or "best" set of variates will be determined on the basis 

of measures of "goodness" such as the simple population corre- 

lation coefficient and the multiple population correlation 

coefficient. We will limit our consideration to single-stage 

procedures. 

The problem of selecting a variate or set of variates for 

prediction of a designated variate occurs in many areas. 

Hotelling [34] formulated such a problem as a hypothesis test- 

ing problem. We formulate this problem and similar but more 

general ones as multiple-decision problems.  Our major objec- 

tive is to provide a rational basis for determining the sample 

size necessary to insure that the probability of correctly 

selecting the "best" population (or set of variates) is suffi- 

ciently high whenever the "best" population (or set of vari- 

ates) is better than the "next best" population (or set of 



v«ri«t«a) by at least a pr«dat«rminad amount. 

1.1 The literature 

A considerable literature or selection procedures already 

exists. This discussion is not intended to be a complete re- 

view of the literature of multiple-decision selection proce- 

dures, but rather to provide the reader with some idea of the 

general nature of the previous work which is relevant to this 

thesis. 

Although there are many ways in which selection proce- 

dures can be formulated, the two most common formulations in 

the literature are the "indifference zone" approach as pro- 

posed by Bechhofer [.'>] and the "subset" approach as proposed 

by Gupta [27]. 

Bechhofer [5] formulated and solved the "indifference 

zone" approach for the problem of ranking the means of k uni- 

variate normal populations with common known variances, em- 

ploying a single-stage procedure.  Bechhofer, Kiefer, and 

Sobel [9] have written a monograph. Sequential Identification 

and Ranking Procedures, in which they discuss sequential solu- 

tions to the problems of ranking parameters of Koopman-Darmois 

populations (the normal means problem thus being considered as 

a special case). This monograph also contains a very complete 

bibliography on multiple-decision selection and ranking 

1 
.«*• . -^ la^d- 



3 

procedures (including both the "indifference zone" and the 

"subset" approach).  Paulson [42] has proposed a sequential 

procedure for the normal means problem which is guite differ- 

ent from that described in [9]. 

Bechhofer, Dunnett, and Sobel [7] gave a two-stage proce- 

dure for the normal means problem when the common variance is 

unknown and more recently Robbins, Sobel and Starr [46] have 

given a sequential solution to this problem.  Several other 

papers have considered the "indifference zone" formulation for 

other univariate distributions and/or other parameters.  The 

paper on ranking variances of univariate normal populations by 

Bechhofer and Sobel [10] is of particular relevance to this 

thesis. 

A similar development has occurred for the "subset" for- 

mulation of the ranking problem.  We will be concerned only 

with the "indifference zone" approach in this thesis and refer 

the reader to Gupta [27] for a description of the "subset" 

approach. 

While most of the previous work has dealt with univariate 

populations, some recent papers (Alam and Rizvi [1], 

t 
Gnanadesikan [23], Gupta [28], Gupta and Panchapekesan [29], 

During the period in which this thesis was being written 
in final form, this paper was delivered at the Second Interna- 
tional Symposium on Multivariate Analysis. The problem that 
we consider in Section 2.3 is a special case of the one 
described in this paper. 



Gupta and Studden (30] , Kriahnaiah [36], Krishnaiah and Rizvi 

[37], and Thornby [49]), using a v_riety of approaches, have 

considered single-stage procedures for ranking problems in- 

volving k p-variate (k ^ 2, p ^ 2) normal populations.  Here 

unlike the problems involving univariate populations, the 

vectors or matrices of parameters do not have a single "natu- 

ral" ranking, but can be ranked according to many different 

criteria.  All of these papers consider problems wherein the 

"goodness" of a population is measured in terms of predeter- 

mined univariate functions of its parameters.  The problems 

considered in these papers can be categorized on the basis of 

these functions.  One category consists of those problems in 

which this function is the Mahalanobis distance M^^^'H.!» where 

M. and Zi  are the population mean vector and the population 

covariance matrix, respectively, of the i   p-variate popula- 

tion, and includes problems considered in [1], [28] , [30], and 

[37].  Another category consists of those probleus in which 

this function depends only on the elements of the m and in- 

cludes problems considered in [23], [37], and [49].  A third 

category consists of those problems in which this function de- 

pends only on the elements of the Z^  and includes problems 

considered by [23], [29], and [36].  The problems considered 

in Part I of this thesis fall into this tnird category. 

The problems of all three of these categories appear to 

I 
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be rather artificial and are mainly of  theoretical   interest. 

In this   thesis our principal  reason  for considering  problems 

of  this  nature is   that they provide  some  insight  into  the 

solutions  of  problems which do have a  practical  significance. 

These  latter  problems which are  associated with a  single 

multivariate normal population are considered  in Part  II  of 

this  thesis. 

Several papers have also been written on another class of 

problems—ranking the variates of a single p-variate popula- 

tion. There are numerous possible "natural" rankings of the 

variates for this class of problems, including the "natural" 

ranking for the corresponding problem involving k univariate 

populations. These problems are complicated by the correla- 

tion structure (which may be unknown) between these variates, 

since most of the general theorems concerning ranking (e.g , 

see Barr  and Rizvi   [3])   assume  the  variates  to be   independent, 

Bechhofer,   Elmaghraby  and Morse   [8]   have given  a  single- 

stage solution for the problem of  selecting  the variate with 

the  largest  single-trial  cell  probability for a single multi- 

nomial population;   a sequential   solution has  also been  given 

by Bechhofer,  Kiefer,  and Sobel   [9]. 

Gnanadesikan   [23]   has given  a  single-stage solution  for 

the   "subset"   approach to  the  problem of selecting  the  variate 

with  the  largest  standardized population mean  for both  the 
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case of a known and an unknown covariance matrix.  Bechhofer, 

Kiefer and Sobel [9] have shown that their sequential solution 

for Koopman-Darmois populations holds for the problem of 

selecting the variate with the largest population mean from a 

single multivariate normal population v/ith a known covariance 

matrix 10^^} of the form o^ = •< 0  ls!^ \ and also for the 

problem of selecting the variate with the largest population 

variance from a single bivariate normal population with known 

or unknown population means and known population correlation 

coefficient.  The problems considered in Part II fall within 

this general class of problems, which involve ranking the var- 

iates of a single multivariate population. 

1.2 Summary 

This thesis consists of two distinct, but related parts. 

In both parts our ultimate objective will be to provide a 

rational basis for determining the sample size for an experi- 

ment in which the goal is to select the "best" population (or 

set of variates) when certain probability requirements (which 

will be described precisely in later sections) are to be 

guaranteed.  The formulation that we adopt here falls within 

the framework of the "indifference zone" ranking approach as 

proposed by Bechhofer. [5]. Many of the ideas considered in 

this thesis could als^ be carried over to the "subset" 



formulation of Gupta [27] , but we do not consider his approach 

here. 

In order to determine the exact sample size required for 

the "indifference zone" approach, one must know the exact 

joint distribution of the statistics on which the decision 

procedure is based.  For many of the problems which we consid- 

er in this thesis, in particular those in Part II, the deter- 

mination of these exact distributions appears almost hopele,s. 

Hence we will find the asymptotic joint distribution of these 

statistics and work with it in the same manner as one would 

with the exact joint distribution were it known.  That is, we 

will obtain the infimum of the asymptotic probability of cor- 

rect selection over the region of preference for a correct 

selection and choose our sample size in such a way that this 

infinum satisfies the probability requirement.  For certain of 

these cases the exact infimum of the asymptotic probability, 

referred to above, is also difficult to obtain, and in these 

cases we find a lower bound to this asymptotic probability and 

obtain the infimum of this lower bound.  Using these results, 

we find a conservative approximation to the asymptotic sample 

size necessary to satisfy the probability requirement. 

In Part I we consider problems concerning the selection 

of a "best" population from a set of k independent bivariate 

normal populations. We will be interested in attempting to 
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predict one of the variates of the bivariate normal population 

on the basis of the other variate.  The "goodness" of this 

prediction will be measured in terms of three different 

criteria—the population conditional variance, the algebraic 

value of the population correlation coefficient, and the 

absolute value of the population correlation coefficient. 

All three of the problems considered in this part are 

rather artificial and are mainly of theoretical interest.  Our 

principal reason for studying them is that they provide some 

insight into similar, but more difficult problems (which do 

have practical importance) considered in Part II. 

In Part II we consider the problem of selecting the 

"best" set of a preassigned number t of variates from a set of 

k (t < k) variates (which we term the predictor variates) for 

predicting a designated variate (which we term the predictand) 

in a (k+1)-variate normal population.  Throughout this part 

the "best" set of predictor variates will be defined to be 

that set of t predictor variates for which the predictand has 

the smallest population conditional variance or equivalently 

that set of t predictor variates with which the predictand has 

the largest population multiple correlation coefficient. 

In Chapter 3 we give the formal problem statement in its 

most general form along with the notation and an expression 

for the asymptotic probability of correct selection for this 



problem. 

Throughout Chapter 4 we asjume that the predictor vari- 

ates are uncorrelated and seek the asymptotic sample size 

which satisfies the probability requirement.  For (k = 2, 

t » 1) we accomplish this objective by finding the infimum of 

the asymptotic probability of correct selection.  For k > 2 we 

obtain approximations to the asymptotic sample size by finding 

lower bounds on the asymptotic probabilities of correct selec- 

tion and then obtaining lower limits for these bounds over the 

region of preference for a correct selection.  For (k > 2, 

t ■ 1) we use the Slepian inequality (Appendix B) to obtain 

this lower bound on the asymptotic probability of correct 

selection and for (k > 2, t > 1) we use the Bonferroni in- 

equality (Appendix B) to obtain this lower bound. 

In Chapter 5 we drop the assumption of uncorrelated 

predictor variates and proceed in a manner similar to that 

described in Chapter 4, restricting consideration to the case 

t » 1.  For (k = 2, t = 1) we obtain the exact asymptotic 

sample size which satisfies the probability requirement.  For 

(k > 2, t « 1) we use the Bonferroni inequality to obtain a 

lower bound on the probability of correct selection and then 

find the infimum of this lower bound over the region of pref- 

erence for a correct selection and the corresponding approxi- 

mation to the asymptotic sample size. 
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In Chapter 6, we suggest some areas of future research. 

The asymptotic distribution theory of the sample statis- 

tics used in the decision procedures of Part II is given in 

Appendix A.  The Bonferroni and the Slepian inequalities are 

given in Appendix B.  In Appendix C two sample size approxima- 

tions derived from these inequalities for the problem of rank- 

ing the means of normal populations with common known vari- 

ances are compared with the exact sample size. 



PART I 

k Bivariate Normal Populations 

In Part I we will consider situations in which we have k 

independent random vectors *. - (xii » xi2^ '   each 0^ which has 

a bivariate normal distribution with unknown mean vector 

V». « (u-w WT) and unknown covariance matrix E., where the —i    il  x2 i 

elements of E- are given by o- __ (r,s = 1,2).  Throughout 
X X f ITS 

this part we will be  interested in attempting  to predict one 

of  the variates of  a bivariate normal population on the basis 

of  the other variate.     The  "goodness"   of  the prediction will 

be measured in terms  of  the population conditional variance, 

the  algebraic value of  the population correlation coefficient, 

and  the absolute value  of  the population correlation 

coefficient. 

Our objective will  be  to provide  a  rational basis   for de- 

termining  the  sample  size  for an experiment  in which  the goal 

is   to select  the  "best"   bivariate  population when certain 

probability  requirements   (which will be  described in  later 

sections)   Are  to be guaranteed.     The  formulations that we will 

adopt fall within  the  framework of  the so-called "indifference 

zone"  ranking approach  as proposed by Bechhofer   [5]. 

For simplicity,  we will not distinguish notationally 
between random variables and their observed values. 

11 



(2.1)    Var(xil|xi2) - a^^. 

2.    Three formulations 

We consider the three formulations of Part I in this 

chapter.  For the first formulation we use the exact joint 

distribution of the statistics on which the decision pror 

is based, in order to determine the minimum sample si;"- 

will guarantee the probability requirement. 

For the latter two formulations we find the joint anymp- 

totic distribution of a transformation of the statistics used 

in the decision procedures, and work with this asymptotic 

distribution in the same manner as one would with the exact 

distribution.  That is, we obtain the infimum of the asymp- 

totic probability of correct selection over the region of 

preference for a correct selection and then choose our sample 

size in such a way that this infimum satisfies the probability 

requirement. 

2.1 Conditional variance formulation 

In Section 2.1 we will be concerned with the problem of 

selecting the "best" population from a set of k independent 

bivariate normal populations 11^ (i »1, 2, ..., k) , the "good- 

ness" of the II- being measured in terms of the population 

conditional vaziances 

12 
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We denote the ranked values of the <■'?   jij by 

lll;l|2 - 0[21;1|2 - * - 0[kl;l|2- 

It is assumed that the true pairing of the II. with the 

Of, ,|2 is unknown to the experimenter, and that he has no 

a priori knowledge which is relevant to the true pairing of 

any of the populations with the ranked values of the 0?.i]2' 

r 

2.1.1    The goal  and the probability requirement 

In this  section we consider  the  following goal 

(2.2) "To select the n.   associated with ol.,   ,|_. 
i [ 1 ] ; 11 2 

The term correct selection (CS) will then denote the action of 

selecting the population associated with 0rii iij«  df more 

than one n. is such that the associated o? IIT is equal to 

ani«ll2' then  the selection of any one of these II. is termed 

a CS.) 

Before experimentation begins the experii...nter must spec- 

ify two constants {8*, P*} with 1 < e* < ~ and 1/k < P* < 1, 

which are then incorporated into the prol>ability requirement. 

The numerical values of these constants are assumed to depend 

on th« economic considerations of the particular problem.  The 

probability requirement can then be stated as 

(2.3) PCS > P* whenever o? 
12];1 2 - 

> 9' tll;l|2- 
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The decision procedure which we propose in the next sec* 

tion guarantees the probability requirement when the ssmple 

sizes are chosen appropriately. 

2.1.2    Single-stage decision procedure 

We will base our decision procedure on  ehe values of a 

predetermined number N of  independent obsc   •acio .« 

(2.4) x^   ^   (x^,   x^. 2,, ..   i') 

on each 11. (i • 1, 2, ... , k) , from which we wi.l calculate the 

values of the X sample conditional variances of   ,i», where 

(2.5) 
N   (P) x  - t    x^/N 

P"l 
(j-1,2), 

(2.6) 

and 

N 

i;jm 
p-1 iT-V^-^ (j,m-l,2). 

(2.7) sj;l|2 -   (vi;11  -  v'jl2/vi;22)/(N-2). 

We denote the ranked values of the s?  .^ by 

■llj;l|2   <   8I2];1|2   <   •-   <   8(kJ;l|2- 

In addition we let B2...   .,J denote tha sample co    itionl var- 

iance associated with o?..   . |2. 

For this single-stage procedure,   the experimenter 
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proo««da as  follow!t    H« tak«« N pairs of obsarvatlons  from 

each of the k n.,  computes the values of the s?.ijo'   an^ 8e" 

lects  the population according to the following decision rule: 

"Select the population associated with sjL,   if 2' 

I i . (2.8)    and assert that this is the population associated 

with 0I11,1|2-" 

2.1.3 Probability of correct selection 

The probability of correct selection for this case can be 

written as 

(2.3)    PCS - P{82(1);1i2 L  s(i);l|2    (i ' 2' 3' -•" k)} 

By a special case of Anderson's [2] Theorem 4.3.3, we 

have that each {N-2)8^,. iio/o?., ■. 1 - is distributed as chi- li) .-l^' li];11 2 

square with N-2 degrees of freedom and since these k chi- 

square variates are independent, this problem reduces to the 

problem of ranking variances of normal populations already 

treated by Bechhofer and Sobel [10).  They give exact analyt- 

ical expressions for the PCS as well as tables for computing 

th« exact sample size when the P* and k values are such that 

this sample size is small (N-2 <_ 20) .  They also show that 

when the values of P* and k are such that the sample size is 

mod-arately large, a dose approximation to the sample size can 

be calculated from 

i    -- -,1 
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(2.10),  /n - 2d(k#P*)/log »*, 

where N ^ n+2 and d(kfP*) is given in Table 1 of Bechhofer 

[51. 

2.2 Correlation coefficient formulation 

In Section 2.2 we will again consider the problem of 

selecting the "best" population from a set of k independent 

bivariate normal populations Hid - 1, 2,   ...» k). However in 

this section the "goodness" of the 11, will be measured in 

terms of the population correlation coefficients p, where, 

using the notation oi  Section 2.1, 

(2.11)   Qi  - °i)12//ai;li aU22. 

We denote the ranked values of the r^ by 

As before, we assume that the experimenter has no a pri- 

ori knowledge which is relevant to the true pairir.g of any of 

the II- with the ranked values of the parameters. 

2.2.1 The goal and the probability requirement 

For this measure,of "goodness" of the IL , we consider the 

following goali 
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(2.12) "To select the II- associated with Pr^i«" 

The term correct seleccion will then denote the action of se- 

lecting the population associated with Prj-i-  (1^ more than 

one R. is such that the associated p. is equal to Pr^i» then 

the selection of any one oi these 1^ is termed a CS.) 

Before experimentation begins the experimenter must spec- 

ify two constants {6*, P*} with 0 < 6* < 2 and 1/k < P* < 1, 

which are then incorporated into the probability requirement. 

For this goal, the probability requirement can then be stated 

as; 

(2.13) PCS _> P* whenever p,kj >_ Prj^i] + <S*- 

The decision procedure which we propose in the next sec- 

tion guarantees the probability requirement when the sample 

sizes are chosen appropriately. 

2.2.2 Single-stage decision procedure 

Our single-stage decision procedure is based on the 

values of the k sample correlation coefficients r- where, 

using the notation of Section 2.1.2, 

(2-14)   ri a vi;l.?//vi;ll vir22- 

We denote the ranked values of the r. by 
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< rn, < ... < r r[l]   r[2] [k]' 

and in addition we let T/JX denote the sample correlation co- 

efficient associated with Prji- 

The experimenter proceeds in the saune manner as in Sec- 

tion 2.1.2, using the following decision rule in place of 

(2.8): 

"Select the population associated with rf. , and 

(2.15)    assert that this is the population associated with 

Plk]-" 

Eaton [15] has shown that this decision rulo is minimax 

and also is most economical (Hall [31], [32]) within the class 

of dll decision rules. 

2.2.3 Probability of correct selection 

The PCS for this problem can be written as 

(2.16)    PCS = P{r(k) > r(i) (1=1, 2,   ..., k-1)}. 

Because of the unwieldy form of the exact distribution of 

the r^ when p^ ^ 0, we will attack this problem using the 

asymptotic distribution of Fisher's variance stabilizing 

transformation 

(2.17)    z. = (1/2) log((l + ri)/(l - rj ) . 
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The approach of the distribution of the z. to normality is 

much more rapid than that of the distribution of the r.. The 

z. are asymptotically unbiased estimators of the 

(2.18) q = (1/2) log({l + pi)/(l - p^), 

and have asymptotic variances 1/n, where n = N - 3.  (The -3 

is a small-sample correction.) 

We denote the ranked values of the ^. by 

^11] - ^[2] - *•• - ^[k]' 

Since ^. is a monotonic increasing function of p., the ranked 

parameters Pii-t   and Cr^i are associated with the same 

population. 

In a similar manner we denote the ranked values of the z^ 

by 

Z[ll < Z[2] <   •'   <   z[k]- 

We also let r/.» and Z/^\ denote the estimators of pr^i 

and Srij» respectively, i.e., P[i]' ^[ij' r(i) and z(i) are 

all associated with the same population. 

Hence, by letting 

(2.19) y. - (^/2)((z(i) - z(k)) - (C^j - ^[k])), 

the PCS can be written as 

MMM 
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(2.20) PCS = P{y. < (/n/2)(5[k) - C^j)   (i=l,2,... ,k-l) ) . 

Since asymptotically (N -*■  ») the variates 

Yi» Yo' •••' ^k-l have a multivariate normal distribution, the 

asymptotic probability of correct selection PCS can be given 

as 

(2.21) PCSa » *k_1(T1, T2, ..., T^J^) , 

where 

T. = Un/2)U[k]   -  l-ii,), 

and *jc_i is a (k-1) -variate standard normal distribution func- 

tion with zero means, unit variances and off-diagonal covari- 

ances of 1/2. 

The parameter configuration in the region of preference 

for a correct selection, for which the PCS is minimized is 

called the least favorable configuration (LFC).  Since we will 

be working with the asymptotic distribution, we will denote 

the parameter configuration where the PCS  is minimized by 

LFC,. 
Cl 

The following lemma will be used later in proving theo- 

rems concerning the LFC.  Fixing Prkl = p', we have: 

M^MMMaMMHaHMI 
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Lemma 2.1 

(2.22) 

where 

infimum        pcsa " *k-l^
T,' T,' •**' r^' 

p(k-l] < P' " ö* 

T' = (/n/2)(r - &') , 

V  *  (1/2) log((l+p•)/(l-p•)), 

and 

6' = (1/1) log((l+p,-6*)/(l-p,+6*)). 

This infimum is attained when 

(2.23)    Pfij - P'-S* (i=l,2,...,k-l). 

Proof: 

We use Rizvi's [45] Theorem 1 and the monotone likelihood 

ratio property of the normal density to show that PCSa is a 

nondecreasing function of Crj-i and a nonincreasing function of 

Srjjd = 1» 2,   ...,  k-1) for the decision rule (2.15). 

Since ^r-, is a monotone increasing function of Pr^i/ the 

infimum of the PCS,, is attained at 5,., = ^' - ö'd = 
a i x j 

1,  2,   ...,  k-1) and we have the desired conclusion. 

Using this lemma ve now find tha LFCa. 
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Theorem 2.1 

infimum 
(2.24) 

PCSa « «^(d, d, ..., d) , 

p[k] - p[k-l] + 6* 

where 

d » (^/2)log((l + 6*/2)/(l - 6*/2)). 

The corresponding LFC is 

(2.25) 

Pji, - -6V2 

PIkj - ÖV2. 

(i»l,2,...,k-l) 

Proof; 

Using Lenuna  2.1,  the problem reduces to finding  the infi- 

mum of T*  when 6*-l <  p'   <  1.     Setting the derivative of T' 

(tauten with respect to  p')   equal  to  zero we obtain  p'   ■   S*/2. 

Differentiating a 2nd time with  respect  to p'   and evalu- 

ating this expression at  p*   » ö*/2 we have 

(1 +   ö*/2)"1(l  -  6*/2)"2   -   (1  -  6*/2}-l{l +   6*/2)-2, 

which can be shown to be > 0 for all 6* > 0 by noting that 

(2+6*)/(2-6*) < {(2+6*)/(2-6*))2. 

Hence  p*   « 6*/2 yields a minimum,   and  the LFC.  is 
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p[il c "6*/2 {i=l,2,...,k-l) 

Plk] - p' = 6V2. 

The asymptotic seunple size can be calculated by 

(2.27) /n - 2d(k,P*)/log{(l + 6*/2)/(l - 6*/2)}, 

where d(k,P*) is given in Table 1 of [51. 

2.2.4 An additional restriction 

In some cases the experimenter may be interested in guar- 

anteeing the probability requirement only when p,. , ^ p*, a 

preassigned constant, or he may have information that 

pfkl - p**  formally: 

(2.28) PCS > P* whenever p^, > Pr^.ji + 5* and p-, > p*. 

For this new probability requirement, it is obvious that 

when -1 < p* ^ 6V2, the result of Theorem 3.1 still holds. 

however, when >,* > 6*/2, we obtain a new LFC  and a reduction a 

in the asymptotic sample size. 

Theorem 2.2 

infimum      ^^ ■ *jc_i(d» d, ..., d) , 

(2-29)    p[kl ^ ptk.l] + 6* 

p(k] - P* > 6*/2 
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where 

d » (*/n/2)log{(l+p*) (l-p*+Ö*)/(l-p*) (l,-|-p*-6*)}. 

The corresponding LFC is 

P[i]   - p* - 6* (1=1,2,..^k-l) 

(2.30) 

Proof: 

Prvi = P* 

We again use Lemma 2.1 which reduces the problem to find- 

ing the value of p' where the infimum PCS_ is attained.  Just 
j.   •   a 

P* < P' 

as before we note that p' appears only as an argument of ♦)c_i 

and since ^j-i is a monotonic increasing function of each of 

its arguments, we need only minimize T'. Next we show that 

the derivative of T' with respect to p* is nonnegative, i.e., 

arvap' - {(l+p1) (l-p1)}-1 - {(l+p1) d-p') + 

p'fi* - 6*2)'1 

> 0, 

when 

6*/2 < P* < 1. 

We use this result along with the result of Theorem 2.1 (unre- 

stricted minimum occurs at 6*/2) and the continuity of the 

mmm^^tm 
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function to complete the proof of the theorem. 

Again using Table 1 of [5], the asymptotic sample size 

can be calculated from 

(2.31) /n =  2d(klP*)/log{(l+p*) (l-p*+6*)/(l-p*) (l+p*-6*) }. 

2.3    Absolute value of the correlation coefficient formulation 

In Section  2.3 we consider the  absolute value of  the pop- 

ulation correlation coefficient  ^i   -   IPj|   as  the measure of 

"goodness" of  the  11.   and are interested in  selecting the  II. 

with the largest  t*   from a set of k  independent IL.    We denote 

the ranked values of  the  C.   by 

0 < ^i] 1 c[2]  < ...  < clk]  < 1. 

Again, we assume that the experimenter has no a priori 

knowledge which is relevant to the true pairing of any of the 

(. with the ranked values of the parameters. 

2.3.1 The goal and the probability requirement 

The corresponding goal is: 

(2.32) "To select the 1^ associated with Cr^i«" 

The term correct selection (CS) will then denote the action of 

selecting the population associated with ^rj,].  (If more than 

one n^ is such that the associated ^i is equal to Cr^i» then 
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the selection of any one of these fl- is termed a CS.) 

The experimenter must specify the same two constants as 

in Section 2.2.1 (in this case 0 < 6* < 1) . The probability 

requirement can then be stated as 

(2.33) PCS > P*f whenever Crkj > Cr^-ij + <5*. 

The decision procedure which we propose in  the next sec- 

tion guarantees the probability requirement when the sample 

sizes are chosen appropriately. 

2.3.2  Single-stage decision procedure 

Our single-stage decision procedure is based on the abso- 

lute values of the k sample correlation coefficients t. « 

,'r-l, where the r. are given by (2.14).  We denote the ranked 

values of the tj, by 

t(l] - t[2J - ••• - t[k]* 

In addition we let t/.» denote the sample quantity associated 

with Cjjj- 

The experimenter proceeds in the same manner as in Sec- 

tion 2.1.2 using the following decision rule in place of (2.8) 

"Select the. population associated with t,. , and 

(2.34) assert that this is the population associated with 

;[k]- 
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2.3.3    Probability of correct selection 

The PCS   for this problem can be written as 

(2.35) PCS  " p{t(k)   - t(i) (i =  1,   2,   ...,  k-1) }. 

Because of the unwieldy form of the exact distribution of 

the t, when p^ ^ 0, we will attack this problem using the fact 

that the asymptotic djitribution of z. (2.17) is normal. 

We define 

(2.36) wi = (l/2)log((l+ti)/(l-ti))/ 

(2.37) ^ - (l/2)log((l+Ci)/(l-Ci)), 

and denote the ranked values of tha w. «md tha H'J by 

WUJ < W[2) <     '•   <  w[k] 

and 

*[1] i ^[2]   - ••• i '•'[kl ' 

respectively. In addition we let the Vii) denote the esti- 

mators of the ^fji» and hence t(.., W/^jf Crji and v*'ril are 

all associated with the same population. 

Since z- and £. are symmetrical functions cf r. and p- 

respectively, «^)out zero, it fo-tlows that 

(2.38)    wi - |zi 
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and 

(2.39)    4^ - |q|. 

Using (2.38), (2.39), and some results obtained by Rizvx [45] 

for ranking the absolute values of means of normal popula- 

tions, we find the LFCa for our problem in the following 

theorem. 

Theorem 2.3 

The LFCa which  satisfies  the conditions  of  the probabil- 

ity  requirement   (2.33)   is  given by 

(2.40) 

C(i]   -  0 (i«l,2,...,k-l) 

C[kl   '  6*- 

Proof: 

Since ZV^/di,- and aw./at. are positive when 0 ^ ;. <_ 1 

and 0 ^ t. ^ 1, respectively, we have by Theorem 1 of Rizvi 

[45] that the PCS is a nonincreasing function of Crj-i and a 

nondecreasing function of i;r.,(i ■ 1, 2, ..., k-1) . Conse- 

quently for any fixed nonnegative value of Cru.i] ■ C' (say) 

(2.35) is minimized subject to the restriction of (2.33) by 

setting 

(2.41) 
C[l] - ;' - 6* (i»l,2,.,.,k-l) , 
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The equivalent of  Rizvi's Theorem  2  for  £;  follows  from 

at./a;.   >  0.      (Note:     Rizvi's  9.   values  are our V.   values.) 

These  results  along with  the LFC  given by Rizvi  for his 

problem yield the LFC    stated in  this  theorem. 

The asymptotic sample size  can be calculated  from 

(2.42) /n  »  2X(k,P*)/log{ (l+6*)/(l-6*) }, 

where  the X  values  are given in Table  II of Rizvi   [45]. 

2.3.4    An additional restriction 

If we  add another restriction  to   (2.33),   similar  to  that 

of Section  2.2.5,   the new probability  requirement  is  given by 

(2.43) PCS   >  P* whenever  ;„,    >   Cr^.ji   +  <5* 

and C[kj   >   C*. 

Under  this  new probability   requirement,   it  is  obvious 

that when 0  ^ c*  ^ 6*,  the result of Theorem 3.3  still holds. 

However, when ;*  > 6*, we obtain a new LFC_ with a correspond- 

ing reduction in sample size. 

Theorem 2.4 

The LFC_ which satisfies the conditions of the 
0 
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probability requirement (2.43) is given by 

(2.44) 

C[i] ^ C* - 6* (i-l,2r...,k-l) 

5[k] " 6*- 

Proof; 

This proof follows in the same manner as the proof of 

Theorem 2.3. 

The asymptotic sample size can be calculated from 

(2.45)    /n = 2X(k,P*)/log{(l+6*)(l-C*+6*)/(l+C*-6*)(1-6*)}, 

where the values of X are given in Table II of (45]. 

mmm 



PART II 

One (k-H.)-Variate Normal Population 

In Part II we will consider situations in which we have 

a random vector x » (x0, x,, ..., x.) which is a (k+1)- 

variate normal distribution with unknown mean vector j^ » 

(yor y,f ..., \i^)   and unknown covariance matrix I.     Throughout 

this part we will be interested in predicting the variate XQ 

(which we term the predictand) on the basis of the best linear 

combination of variates in sets of fixed size t of the k 

(t < k) variates x, , x,» ...» x^ (which we term the predictor 

variates).  For any given set of t predictor variates, the 

"goodness" of the prediction will be measured in terras of the 

population conditional variances of x0 given these t predictor 

variates, ol  t     J J  (or equivalently in terms of the 

population multiple correlation coefficient between x0 and 

these t predictor variates. Rn 4  <     i )•  For fixed (kft) 

we will be interested in these U = C^ parameters. 

Ultimately our objective will be to provide a rational 

basis for determihing the sample size for an experiment in 

which the goal is to select the "best" set of t variates when 

certain probability requirements (which will be described 

precisely in Section 3.3) are to be guaranteed. 

31 
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The general problem of selecting a set of variates to 

predict a specified variate is an old one.  The formulation 

that we adopt here falls within the framework of the "indif- 

ference zone" ranking approach.  In this formulation it is 

necessary to know the exact joint distribution of the statis- 

tics on which the decision procedure is based, in order to 

determine the minimum sample size which guarantees the prob- 

ability requirement.  For all of the problems which we 

consider in Part II, the determination of these exact distri- 

butions appears almost hopeless (and even if one were able to 

find them, they would be very unwieldy) .  Thus we will attack 

these problems by finding the asymptotic joint distribution of 

these statistics and work with it in the same manner as one 

would with the exact joint distribution, were it known.  That 

is, we will obtain the infimum of the asymptotic probability 

of correct selection over the region of preference for a cor- 

rect selection and choose our sample size in such a way that 

this infimum satisfies the probability requirement. The 

asymptotic joint distributiv is referred to above are derived 

in Appendix A.  We will study the various special cases in the 

different chapters of Part II.  For certain of these cases the 

exact infimum of the asymptotic probatility, referred to 

above, is also difficult to obtain, and in these cases we will 

find a lower bound to this asymptotic probability and obtain 
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the infimum of this lower bound. Using these results, we will 

find some conservative approximations to the asymptotic sample 

sizes necessary to satisfy the probability requirements. 

riJ 



3. General notation 

In Part II we will consider sets of a preassigned number 

of t of the k predictor variates and will use the following 

notation to label these U = C^ different sets. Let a = 

(cu, cij'   •••» aK^ ^e a ^"vect01" consisting of zeros and ones 

k 
I    ai * t, a given integer d <, t <_ k-1) ; and let x^ = 

(x. , x. , ... , x. ) be a t-vector obtained from the k-vector 
11  12       1t 

(x,, Xj, ..., x,) of the predictor variates by deleting those 

x. for which a- = 0. 

In a similar manner we let u^ and E denote the popula- 

tion mean vector and the population covariance matrix, respec- 

tively, of x^ and let OQ denote the vector of population 

covariances between the random variable x« and the random 

vector x. 

In addition, we denote the population conditional vari- 

ance of x-, given the set of predictor variates x , by 

(3.1)    VarUj^) - o^a 

and the  population multiple correlation coefficient,   between 

x0  and xa,   by 

so that  the  conditional variance  of  XQ,  given  the  set  of 

34 
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predictor variates x , can be written as 

(3.3) 

ö0.a = o00 " H-Oa^^Oa 

= a00(1 " H.J' 

3.1 Ranked values of the parameters—notation 

In our formulation of the ranking problem we will be in- 

terested in the ranked values of the o« „ and of the Rn n. U . a u. a 

For fixed t we denote the ranked values of these parameters by 

o0.[l] - O0.(2] - ••• ■- a0.[Ul 

and 

R0.[1] - R0. [2] - •'• - R0.[U]' 

where, as before, U = C..  Since RQ a ^, 0, we have 

(3.4)    o2
0[i]   = OQod-Rj^.^^). 

It is assumed that the true pairing of the x with o^ r ., (or c '       -a      0. [ j ] 

equivalently with RQ fn--i + ii) ^s unknown to the experimenter 

and that he has no a priori knowledge which is relevant to the 

true pairing of any of the populations with the ranked values 

of the parameters, i.e., it is not known which t of the k 

variates x,, x2, . .*. , x, are associated with any of the 

Oo.[ji- 
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3.2 Goals 

In Part II the following two equivalent gqals will be of 
\ 

interest to us: 

Goal A:  "To select the set of t variates associated 
(3.5a) 

with a5>m.- 

Goal B:  "To select the set of t variates associated 
(3.5b) 

with Ko.iur" 

The term correct selection will denote the action of 

selecting the set of t variates associated with ai   ,,, (or 

equivalently the set of t variates associated with R0 ryi). 

(If more than one of the al   , are equal to ai   ,,,, the selec- 

tion of the set of variates corresponding to any of these oi 

is considered a correct selection.) 

3.3 Probability requirement 

Before experimentation begins the experimenter must spec- 

ify two constants {e*,P*} with 1 < 9* < » and 1/U <P*<1( 

which a-v then incorporated into the probability requirement. 

The numerical values of these constants are assumed to depend 

on economic considerations associated with the particular 

problem.  The probability requirement can be stated as 

(3.6a)   PCS > P* whenever a*   ro]/0« fll - e* 
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or equivalently, 

(3.6b>   PCS > P* whenever (i-^J. (U-IJ )/(1"i:[0. [Ul, - 8*' 

The decision procedure which we propose in the next sec- 

tion guarantees these probability requirements when the sample 

sizes are chosen appropriately. 

3.4 Ranked values of the statistics—notation 

In general we assume that the experimenter will be taking 

a predetermined number N of independent vector-observations 

(3.7) x(P) - (x^ x™   ..., x,[p)^ (p-1,2 N) 

from a (k-H)-variate normal population.  In J-erms of the N 

vector-observations,, we denote the sample mean of the i— 

variate by 

(3.8) x. -  E  x.(p)/N, 
1  p-1  i 

and the vector of sample means and the matrix of sums of 

squares and cross products of deviations about the mean by 

(3.9)     X • '^o' *l' •••» "y'' 

and 

(3.10)    V -  E (x^ - x),(x(p) - x) , 
p. I 
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respectively. 

Using the a notation defined in Section 3, the sample 

mean vector and the sum of squares and cross products of devi- 

ations about the mean matrix of x are given by 

(3.11) JL " *<  4      H ' 
—V»     —i. w -L 2 ' • • • '■l4- 

and 

(3.12) V -  E (x(p) - x ),(x(p) - x ), 
a  p-i "«    -^       -a    -« ' 

respectively.  The usual sample quantities associated with 

o00' ^Oo' o0.a' and R0.a are given by 

(3-13)  voo " \{xoP) - ^o)2' 

(3.14)   ^-^(x^ -^Mx^ -xa), 

(3-15)    8ä.a " (v00 - ^aV;1^a,/(N-t-1)' 

and 

<3-16)    Va- (<^aV;^a)/v00,l/2' 

We let n ■ N - t - 1 and note that 

'3-l7>   'La ' "OO11 -  Ri.a)/h- 

We denote the ranked values of the si   and the Rn  by O.a O.a ^ 

"O.IIJ < 80.[2] < "" < 80.[U1 
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and 

R0.[11 <  R0.(2J < ••• < Ro.[ül' 

respectively.  Since R.  > 0, we hava 
0.a "■ 

(3.18) sj^ij   » v00(l - R^j-i+uJ/n. 

In addition we denot«? the sample  conditional variance  and the 

sample multiple correlation coefficient of the   (t+1)-variate 

normal distribution associated with a*   ,.,   and R.   rn.,.i+ii  by 

80.(i)   aR(^ R0. (U-i+1)  respectively,   so that 

(3•19,   so.{i) " voo(1 - Ro.(u-i+i)>/
n- 

3.5 Single-stage decision procedure 

In Pc.rt II we will be concerned with a single-stage pro- 

cedure which guarantees the probability requirement (3.8). 

For this single-stags procedure the experimenter proceeds as 

follows:  He takes N independent vector-observations from the 

(k+1)-variate normal population, computes the values of the U 

sample conditional variances si n   (or equivalently the U 

sample multiple correlation coefficients RQ  ) and selects the 

set of t variates according to the following decision rule: 

"Select the pet of t variates associated with s* ... 

(or equivalently Rft ...,) and assert that this set of 
(3.20) 0,lüJ 
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variates  is associated with al   ,,,   (or equivalently 

Ro.lu])•,' 

3.6  Probability of correct selection 

The probability of correct selection (PCS) using the pro- 

cedure of Section 3.5 can be written as 

(3.21)   PCS - P{s*>(1) < s5#(i),     (i = 2,   3, ..., U)}, 

where each cf the n BI   ii\/oi   ri, is distributed as chi- 

square with n degrees of freedom (Anderson [2], Theorem 

4.3.3).  However the si   ...   are not independently dis- 

tributed and their joint distribution does not appear to be 

known.  The exact distribution would appear to be at least 

as complicated as that of the joint distribution of the 

simple correlation coefficients in samples from a multivariate 

normal distribution, which is quite messy.  Since knowledge 

of this distribution is necessary in order to determine the 

minimum required sample size (see the analogous, but much 

simpler problem described in Section 2.1.4), we will study 

this problem, from the large-sample point of view.  (In prac- 

tice., "large" samples will usually be required when applying 

this procedure.)  By using the variance stabilizing, logarith- 

mic trimsformation of the sample conditional variances, we 

obtain an asymptotic approximation for the PCS which should be 
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sufficiently accurate  to deterroine  the sample size requirement 

for many problems. 

We define 

(3.22) yi  "   ^/2)log(s5>(1)/sJ# (u,i+1))        (i=l, 2 ,. . . ,U-1) , 

(3.23) ^i "  ~(/n-/2)lo9(oo. [l]/a0. (U-i^-l],     (i=l/2 ,. . . ,U-1) , 

and 

wi ' yi + Tl (i=l,2,...,U-l). 

Then (3.21) can be written as 

(3.24) PCS » P{w| < YJ    (i =» 1, 2, . .., ü - 1) }. 

Using Theorems A.l and A.2# we obtain the following 

asymptotic (N--♦ «) appro'timation for this PCS, which we denote 

by: 

(3.25) PCSa - ♦Ö.1(Yi. Y2' ••" ^V-^ ' 

where ♦M_I is a (U-l)-variate normal distribution function 

havinc, zero means.  (The * here is used to indicate that the 

variances are not unity, i.e., this is not a standardized 

multivariate normal distribution function.) We have net been 

able to determine the covariance matrix for general Z   and 

arbitrary t.  However,'in Appendix A we give results for 

general Z  when t ^ 1 and for a special form of Z   (i.e.. 

MMa 
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uncorrelated predictor variates) for arbitrary t.  These 

results will be used in the following chapters to determine 

the asymptotic sample size. 



4.  Uncorrelated predictor variates 

Throughout Chapter 4 we consider the case in which the 

predictor variatos x,, x-, ...,x, of the (k+1)-variate normal 

distribution are uncorrelated, i.e., p.. = 0, (i ?  j; i = 

1, 2, ..., k).  We denote the covariance matrix of this (k+1)- 

variate normal distribution by EQ, where the ij— element of 

ZQ is given by 

N 

(4.1) ^O^ij 

0ii (j = i; i = 0, 1, ..., k) 

pij'/oii0jj'    ^ ^; i'^ = 0' ''  "' k) 

The mean vector y and the nonzero elements of £Q are assumed 

to be unknown.  The assumption of uncorrelated predictor vari- 

ates yields a simplification in the covariances of the asymp- 

totic joint distribution of the s.2.   and allows the require- J Ü. i ^ 

mcnt, that ^Q be nonnegative definite, to be expressed in a 

simple form. 

4 .1  t = 1 

We first consider the situation in which the experi- 

menter's objective i3 to select t ■ I variate from the k 

possible predictor variates. 

4.1.1  Notation 

For this case, thf. general notation of Chapter 3 

43 



44 

simplifies considerably. The k-vector a now consists of k - 1 

zeros and 1 one. If we let i denote that component of a which 

is one» then 

(4.2)    *a - xi' 

{4-3)    o0.a " ö0.i' 

(4-4)    S0.a = ^O.i' 

and since R^   .   ■  PQ;»   (3.3)   becomes 

(4.5) a2
0i  -  o00(i -  p^). 

We denote the ranked values of the p*. by 

p6[l] - P012) - •■• ^ p0[kl' 

and write (3.4) as 

(4-6)    o0.[i) " o00(1 ' PQlk-i+lp- 

Then the goal (3.5) can be stated as: 

(4.7)    "To select the variate associated with Porvi'" 

and the probability requirement (3.6) becomes 

(4.8)    PCS > P* whenever (1 - PO[K-1])/(1
 " p0[k]) - 

Similar notational simplifications result for the 
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corresponding sample quantities, i.e., (3.12), (3.14), (3.15), 

and (3.16) become 

(4.9) 

(4.10) 

vii - pV^ " N))2' 

(4.11)    8 O.i (V00 " v0i/vii)/n' 

and 

(4.12)    R0>i . /^/Vo^., 

respectively.  Since Ro i ^ r^, and n » N - 2, (3.17) becomes 

(4.13) 8o.i " voo(1 ■ r0i)/n- 

Denoting the ranked values of the zi.   by 

r0ll] < r0[21 <     "   <  r0(kJ' 

(3.18) becomes 

(4.14)    sj^j - v00(l - rj[k.i+1))/n. 

In  addition we denote  the  sample  correlation coefficient,  asso- 

elated with  piwii   by  TQ/JW   and hence   (3.19)   can  be written as 

(4.15) s5#(i)   - v0Q(l -  r^(k_i+1))/n. 
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4.1.2 Probability of correct selection 

We define 

(4.16) Yj.. - i^l,,   P0[V r   (iftlti.l-l,2,...,*), 

Sn  log(sJ t^/B*   (k_i+1)) 
(4.17) y. - 0.(1)  0.()ciliL_     (i-i,2,...,k-l), 

2/1 - ^ik 

/Ü  log((l - Pjuj)/(1 - P^j)) 
(4.18) e. UtXj    ^^ (i-l,2,...rk-l), 

1 2/1 " ^k 

and 

wi = yi f Ei (i=l,2,111,k-1). 

Then the PCS (3.24) can be written as 

(4.19) PCS - P{wi <  €i (i - 1, 2,   ..., k-1)}. 

Using Corollary A.4a, we obtain the following asymptotic 

(N - ») approximation for (4.19)? 

(4.20) PCSa - ♦)c.1(e1/ e2, ..., Ej^) » 

where ♦jf_1 is * {k-l)-variate standard normal distribution 

function with zero means, unit variances, and off-diagonal 

covariances given by 

(1   -   Yik  -   Yi)c  +   YiJ 
(4.21) y\.   - g 3 (if<j;i,j-l,2,...,k-l). 

j      ^t1" W(1 " YjJc) 
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4.1.3 k ;,;,; 2 

In this section we obtain the asymptotic sample size by 

finding thP. infimum of the PCSa over the region of preference 

for a correct selection for the case (k = 2, t = 1) . The com-

plex nature of the correlation (in the asymptotic distribu-

tion) between the estimators sO.(l) and s 0.( 2), which depends 

on the covariance matrix t 0 of the original (k+l)-variate nor­

mal distribution, complicates this problem. For this case 

(4.20) reduces to 

(4.22) 

t rhere t (=t1) is the standard univariate normal distribution 

f unction. 

Preliminary to finding the infimum of (4.22), we give two 

lemmas. Lemma 4.1 is a representation of the requirement that 

t 0 be nonnegative definite (n.n.d.) when k = 2. Lemma 4 . 2 

shows that £i i s a 'decreasing function of Po[i]• 

Lemma 4.1 

For k • 2, t 0 n.n.d. is equivalent to the following 

inequalities: 

> 0 - (i=O,l,2) 
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Proof; 

This equivalence is easily established by using the 

representation that a symmetric matrix is n.n.d. if all of its 

principal minors are nonnegative. 

Lemma 4.2 

(4.23) 3£i/9Po[i]   <0 (i-lr2,...,k-l) , 

when 

p0liJ   +  p0[k]   ^  1 

and 

^  "  POU]^1"   p0[k]J   ie* 

Proof: 

We  let 

g -   {r^/2)log((l  -   Päli])/(1 "   PotkJ^ 

and h ■   /I  -  Yik,   so that  ei  "  g/h.     Then 

ag/äpäjij - -/n/(2(i - pj(i])) 

<   0 

and 

(4.24) 3h/apä(i]   -  f/(2h(l  -   Pod))^1 -  PQlkl^' 
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where 

f = (1 - 2pJ[i] + pj(i] - pj[k]). 

To show that (4.24) is positive we need only show that f > 0 

But 

af/aojj.j - -2(i - pjj.j) 

< o. 

and hence f is  a decreasing function of  p^^,.     To show that 

0{i] f > 0/ we increase Pnrii until either 

PSti] - U   -   8*) + 9*pJ(k] 

or 

p0[i] ~  l  -   Potk] 

which ever occurs first. In either case the result follows 

immediately. Combining these results and noting that h ^ 0 

and g < 0, we obtain the desired conclusion. 

Theorem 4.1 

infimum *(e,) ■ *(e*), 

(4.25)   e12 > 6* 

Lf.   n. n.d. 
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where 

e* -   (/n/2)   log  0* 

and 

ei2 =   (1  "   P0[1])/(1  "   ^[I])' 

Proof: 

For  any pair of values  of   PQfii   and  PQr21   satisfying  the 

restrictions  of  the  theorem,   it  is obvious   from Lemma 4.2  that 

♦ (ei)   is  a decreasing  function of  Pnni'     Hence to obtain the 

infimum of  <J>(e-,), we  increase  POQI   until  it attains values on 

one of  the  two boundaries   (Figure 4.1),   i.e.,   on 

(4.26a)      pjtl] = (i - e*) + e*p5[2] 

or 

(4.26b;        p^^   = 1  -   p2
Q[2] 

Along either of  these boundaries,   e.   can be  expressed as  a 

function of  just one of  the pair of parameters  Pftrii   and 

P012] 

Case   (a) 

After  solving   (4..26a)   for  Qntj]'   anc*  substituting  this 

expression  into   (4.16),   we  obtain expressions   for  712  and  e. 

■M 
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Figure  4.1 

Preference Region (R)   for a Correct Selection 

pÖ[13 

on boundary   (a)   which wa denote by Ya and £»»  respectively, 

i.e., 

OMI - P2    ) - e*2p!M1
)2 

0[1) 0[^ 

and 

e    «   ^ log e*)/(2/l  - Ya). 

Since  log  9*   >  0,   (1  -  Ya)   >   0  and 

3V^5iii = -2eV(1 ■ P0ll)) 

.<   0. 

we have 
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(/n log e*)3Y;,/3p^rll 

< 0. 
2/1 - Ya 

Hence ea is a decreasing function of Poni 
and the infimum of 

ea, along boundary (a) and subject to the conditions of the 

theorem, occurs at the intersection of boundary (a) and 

boundary (b). 

Case (b) 

In a similar manner along boundary (b), a? ter solving 

(4.26b) for Pgm and substituting into (4.16) and (4,18), we 

obtain Yfc ^ 0 and 

eb = (^/2, lo9((1 " P0[l))/p0(ll,• 

Since 

3eb/ap0[l] = -^/^POII^1 " PQUl^ 

< 0, 

e. is a decreasing function of Pofi]»' and the infimum of e. , 

along boundary (b) and subject to the conditions of the theo- 

rem, also occurs at the intersection of boundary (a) and 

boundary (b). 

Hence the infimum of ♦(€,) over this region is attained 

at the intersection of the two boundaries.  Solving (4.26a) 

u 
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2. .  .^^ -2 and (4.26b) for PQ[I]   and Pof21' we obtain the LFC (Section 

2.2.3) 

Poll] " V^1  + e*) 
(4.27) 

>012] = e*/(i + e*), 

and the conclusion of the theorem follows. 

Using the result of this theorem, an asymptotic approxi- 

mation to the sample size can be obtained by setting the 

r.h.s. of (4.25) equal to P*, from which we obtain 

(4.28) /n - 2«-1(P*)/log 6*, 

where $~1 is the inverse of the  standard normal distribution 

function ♦. 

Alternate Prooft 

The theorem can also be proven indirectly by noting that 

Y,2 >, 0, whenever the restrictions of the theorem are satis- 

fied and hence 

infimum ♦(e^) >  ♦(£*). 

(4.29) o12 > 6* 

ZQ  n.n.d. 

Substituting the parameter values given by (4.27) into (4.16) 

and (4.18), we see that the equality is attained and the proof 



is complete. 

The rather long direct proof was given because it pro- 

vides some insight into the solution of more general problems 

considered in later sections.  In addition some of the lemmas 

associated with this theorem are used in the proofs of some of 

the theorems concerning these problems. 

4.1.4 k > 2 

For k  >   2 the problem of finding the infimum of  the PCS 

(4.20)   is  complicated by  the  fact  that both   the  c^ and  the 

y.,  are functions of the Porii« 

To illustrate these complications, we briefly consider 

the case k a 3. Using the results of Plackett [43] for the 

reduction of multivariate nor.nal  integrals,  we have 

(4.30) PCSa » ♦2(E1'   C
2
) 

- »(e^Uj)   + H(pJm,   P5I2]), 

where 

Yi2 

(4.31) H(Po[lj''   PJ[2J,   a   (1/27r>       f     (VA  -   Az) 

+ 'Gnanadesikan (23J has used this method to obtain some 
numerical results for the "subset" approach to some selection 
procedure problems involving a multivariate normal 
distribution. 
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- (e,2 + ei - 2\(,ej) 
eXP   2(1 -X')        dX 

The difficulties encountered in finding the infimum of 

the PCSd using this expression become apparent by taking the 

derivatives of (4.30) with respect to the Pgr,]« However we 

do note that by combining Lemma 4.5 and (4.30) we obtain the 

following inequality: 

(4.32)    *2(el' e2) - *(ei)*(e2)' 

which is a special case of Theorem 4.3. 

Because of the complexity of the PCSa expression for 

k » 3, we circumvent this problem for k > 2 by finding a lower 

bound for the PCSa.  Preliminary to this we prove three lemmas 

from which this bound will follow directly as Theorem 4.2. 

Lemma 4.3 

Zn n.n.d. is equivalent to the following inequalities: 

aii > 0 (i»0,l,...,k) 

k 
1      Poi - 1' i-1 01 

Proof; 

We denote the submatrix of J)Q formed by deleting the 

p (1 ^ p < k) rows ilr 12» ...» ip and columns 
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h.' h' ""  ^p by 

^l' 12' *••' lp' Jl» ^2'   ***' 3p 
lQ 

0<i1<i-<...<i  <k ~ i   z P ~ 

0 < jj. < J2 < '•'   *   lp 1  k' 

and its determinant by 

^l' 12' ••*' ^-p' 3i' ^2' •••' Dp 

Using  this notation the determinant of ZQ  is given by 

\h\ ' ökk lj:ok;kl + I-1)1""1 Pok^'wi^ l2o0;kl- 

By assumption 

i»l i»0 

0 'k 
|ZQ   I and the appropriate lower order minors can be evalu- 

ated in the same manner as |EQ I •  Continuing in this fashion 

we obtain 

k k 
|E0| - (i -   L   p^)    n   0^. 

i-1 i-0 

Using this same method of evaluation, we also note that 

any   (k+l-r)—  U  <  r  <  k)   principal minor of  ZQ   (a minor 

formed by deleting  the  same r  rows  and columns)   can be of  two 

possible forms. 



E7 

Case (a) 

li the 0-- row and column are deleted, the principal 

minor is given by 

" aii- 
i-i 

1 r   * i *  2' '••» ^■j- 

Case (b) 

If tha 0— row and column are not deleted, the submatrix 

is of the same form as EQ and the corresponding principal 

minor is given by 

k       k 
(1 -  E  p^)  n Oii. 

i»l  ül i-1  11 

(i ^ ij^, i2, ..., ir) 

The proof can be completed by using the representation 

that symmetric matrices are n.n.d. iff all principal minors 

are nonnegative and noting the expressions for |E | and the 

principal minors of EQ. 

Lemma 4.4 

(4.33)    Yij > Yik     (i < j < k) 

when 

±4 
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(4.34) p'j,,   *   pjjjj   +   pj(k]   <   1. 

Proof: 

Let 

f =   'ij   *   Yik. 

Then after canceling  terms,  we have 

f " p0IjJ   "  p0[j]   "  p01k]   +  p0lk]   '  p0[l]p0tk] 
(4.35) 

p0(j]p0tk]   +  p0[i]p0[j]   +   p0[k]P0[jl 

We note that 

3f/3pOii]   "  ■2p0[ljp0(k]   +  2p0[i]p0lj] 

= 2po[i](poij] - p0[k]> 

<   0. 

Hence f Is a nonlncreaslng function of PQUI.  TO show that 

f ^ 0 we Increase pfr., until either 

(4.36a)   pj^j - 1 - pJUJ - pjlk] 

or 

(4.36b)   pjjij - pjjjj, 

* 

whichever occurs first. 

HMMa^alaaMMa^l^MBI^aH9laBaMMKaMMnHHiBMa>aH>^MalaauMBHiBHMaBMMMiaMHKMHii 



59 

C*ig (a) 

Substituting (4,36a) into (4.35) and denoting this ex- 

pression by far we have, after canceling terms 

fa " (p0[k] " P0[jj) " (p0(k] " p0lj]) 

- (po[k) " po[j])  " po[j](poik]  ■ p0[j]) 

> 0. 

Case b 

Substituting (4.36b) into (4.35) and denoting thi& ex- 

pression by fb, we have 

(4.37) 

fb "  p0[jl  +  p0ljj   '   p0[j]   "  p0[k]   +  p01k] 

"  2p0[j]p01kl   +  p0[k)p0[j]' 

and 

3fb/3po[ji " 3pofj] + 2po[j] - 1 

M      9 9 k 
4pC(jlp0[k]  +  p0[k] 

It is evident that 

3fb/3pO[jl  ^ 0' 

when  PAJJ-I   <   1/4.     From   (4.34)   and   (4.36b)   we obtain 
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'OIjJ   1   (3   "  'Oik]"2 

p01k]  - 1 " 2p01j]' 

so that 

8fb/3pO[j]   <  7Po[j]   "  3P0Ij]' 

when Po^k]   i V4«     But   (4-34)   and   (4.36b)   imply that  Pgr-n   < 

3/8 and hence 

3fb/3pO[j]  ^ 0- 

Using the same method as before,  we increase  PQ^I   until 

(4.38b')     p^j   >  pJ[kJ 

or 

(4.38b-)      pjj.j   -   (1   -   pJ[k])/2, 

whichever occurs first. 

Case b' 

Substituting (4.38b•) into (4.37) and denoting this ex- 

pression by fwt r we obtain f. , « 0. 
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Case b" 

Substituting (4.38b"; into (4.37) and denoting this ex- 

pression by fb„, we obtain 

fv " (- 9p5[k] + 9p5[k] + po[k] - 1,/8- 

For this case (4.38b") also implies 

1/3 < Pä[k] < 1. 

which gives us f^n ^ 0 and completes the proof. 

Lemma 4.5 

(4.33)    Yij > 0    (i < j < k), 

when 

p0[il + p0[j] + p0[kl ^ 1- 

Proof; 

The proof follows directly from Lemma 4.4 by noting that 

YJI. < 1. (Y-;^ is the covariance between two random variables 

each having unit variance.)  Hence 

1 * Yik - Yjk + Yij > 1 " Yik 

>  0, 

and the lemma follows Immediately. 

Httäm 
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Theorem 4.2 

k-.l 

(4.40)    *k-l(cl' e2' "••' ek-i) - .n  *(ei, 

Proof; 

The proof follows directly fion. Lemma 4.3 and Slepian's 

inequality (Lemma B.2). 

We use this theorem to find a lower limit for the PCSa 

over the region of preference for a correct selection and thus 

obtain a conservative approximation to the asymptotic sample 

size.  (This approximation is conservative in that it will 

always be greater than the true asymptotic sample size.) 

Theorem 4.3 

infimum  PCS,. > {*(e*)}k"1, 

(4-41)    ek-l,k ^ 9* 

EQ n.n.d. 

where 

0i,k- (1 - pS(i])/(1 - p^ik])        (i-1'2 ^^ 

and 

e* - (/n/2) log 9*. 
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Proof: 

This theorem follows from Theorem 4.2 and the fact that 

Yik - 0 (i ' 1' 2' • • •' Jc"1) • 

It is disconcerting to note, however, that 

k-1 k-1 
infimum   n  *(e.) > {*{e*)) 

i»l    X 

(4.42)   ek.1/k > e* 

E» n.n.d. 

for general k. 

Setting the r.h.s. of (4.42) equal to P* we obtain a con- 

servative asymptotic approximation to the sample size 

(4.43) /n = 2*"1(P*1/(k~1))/log 0*. 

If  the experimenter has  a priori knowledge  that 

(4.44) pj(k] < p*2, 

where p*2 is a preassigned constant satisfying 

(4.45) p*2 < {(k-l)e* - (k-2)}/{(k-l)e* + 1}, 

a stronger result can be obtained. 
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Theorem 4.4 

infimum PCSa »  {♦(€**)}k     , 

(4.46) 
ek-l,k ^ e* 

Zn  n.n.d. 

Porici ^ P*2 
'0[k] 

where 

e**  =  e*//l - Y* 

=   (/n log  8*)/(2/1  ~ y*) , 

Y* = {e* - p*2(i - e*)}/{e*(i - p*2){i + p*2)}, 

and  6.   ._,   is given in Theorem 4.3. 

Proof; 

The proof follows directly from Lemma 4.2 by noting that 

p0[k] * p*2 and eik " 9* (i " 1' 2' •••' k"1) yield the r.h.s. 

of (4.46) and LQ   is n.n.d. 

Setting the r.h.s. of (4.46) equal to P*, we obtain the 

following approximation to the asymptotic sample size using 

the a priori information (4.44): 

(4.47)    /n - 2*~1(P*1/(k"1))/(/l - Y* log 9*). 
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4.2  (k > 2f t > 1) 

In the remaining sections of Chapter 4 we consider the 

problem of selecting a set of predictor variates of fixed but 

arbitrary number t (1 < t < k).  We have not been able to show 

that the conditions required for the Slepian inequality (Lemma 

B.2) are satisfied (although we conjecture that they do hold). 

Hence we use the Bonferroni inequality (Lemma B.l) to obtain a 

lower bound on the PCSa and proceed in a manner similar to 

that of Section 4.1.4. 

4.2.1 Notation 

Using the a notation of Chapter 3, we define the k-vector 

a* in terms of the two k-vectors a and o" by giving the i— 

component of a* as 

(4.48)    a* = max(a., a7) . 

We let u^ denote  the ordered p-tuple   (t  <_ p < min(k,   2t)) 

whose  i— component  is given by the position number of the  i— 

nonzero component of  the vector a.     For example,  if   (k = 5, 

t ■ 3),  a =  (1,   0,   0,   1,   1),  and a"  ■   (1,   0,   1,  0,  1),  then 

a*  -   (1,  0,   1,   1,   1),   ua -   (1,   4,   5),  ual,   =   (1,   3,   5),  and 

u Ä  -   (1,   3,   4,   5). a" 

Since the predictor variates are uncorrelated, we then 

have 
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(4.«)        H.a -   l     P'oy 

where  jeu    means that j  takes on the values of  the components 

of u  .     Hence   (3.3)  becomes 

J     a 

The population multiple correlation coefficient between x^ and 

the set consisting of those predictor variates associated with 

R0  or RQ  « is denoted by RQ  * and can be written as 

(4.51)    R0 ^ =  I       ply 

For the previous example we  then have 

H.a -  p5l +  p04  +   Pjs 

(4-52) R5.a"  = päl +  p203 +  p05 

Rä.a*  ' päl +  *Z03 +  pQA +  p55' 

We denote the ranked values  of the oft  ^ and Rn ^ f   and 0.a     0.a 

i»j 
their estimators in the usual manner. And we let  E  pi de- 

m 

note the summation of the pi    over ';he values of the subscript 

of the variates contained in the union of the two sets of 

predictor variates associated with SL ,., and FL ,.,.  Thus, 

if (k « 5, t ■ 3) and the variates associated with RQ r., and 
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^0 Til are xl' x2' x4 and xl' x3' x4' re8Pectiv«ly» than 

(4.53)    'i' pjm =  E  pj,, 
m       m»l 

4.2.2    Probability of correct selection 

Using the notation of Section  4.2.1,  we define 

1  "    ^    Pom 
(4.54) X..   = :  -p f- -j r(i^j;io«l,2 U-l), 

J        U       R0.li]M1       R0.[j]) 

(4.55) yi   ^  
/iTlOg(S0.(l)/S0.(U-^l)) (isslf2 „.^ , 

2/1       -        X-y 

/n log((l -Rj        )/(! - Rj        )) 
(4.56) C.   » Ü,UJ ^-i^— 

1 2/1  -   X-u 

(i=l,2,...,ü-l) , 

and 

wi ' yi + Ci (i=l,2,...,U-l) 

Then  (3.24)   can be written as 

(4.57) PCS = P{wi  <  ^i (i =  1,   2,   ...,  U-l)} 

Using Corollary A.8, we obtain the following asymptotic 

(N ■♦ «>) approximation for (4.57). 

ii in  i   iiiiiiii i    in    —  I,mmmm^tmmi^^^mma^mmtusmimimmmmimmmmmmmmmmmammmtmmm 
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(4.58)    PCLa = *u-l^l' ^2' •••' ^U-l^ ' 

where *t, , is a standard (U-l)-variate normal distribution 

function having zero means, unit variances and off-diagonal 

covariances A! . given by 

(4.59) 
(i - x.M - x.Ti + X. .) 

^i  _  lU    3U    1] 
ij " 2/(1 - X.^d - X^) 

(i^j;i,j«l,2,...,U-l) 

Using this expression  for the PCS   .   we  obtain the follow- 

ing  theorem. 

Theorem  4.5 

(4.60) 

where 

and 

infimum      PCS_   >   1 

VI,ü ^ e* 

-   (U-l)«(-5*) , 

ZQ n.n.d. 

5* »   (/n/2)   log  9* 

eu-i,u "   (1 " R0.1U-1),/(1 ' R0.(UJ)• 

Proof: 

The proof follows  from the fact that X.y ^0   (i 

1,   2,   .. . ,  U-l). 
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Setting the r.h.s. of (4.60) equal to P*, we obtain an 

approximation to the asymptotic sample size 

(4.6.1)    /n = -2*-1((l - P*)/(U-l))/log 9*. 

Although there is no general set of parameter configurations 

where the lower bound attains this lower limit for all t and 

we do not wish to analyze each t separately, we do note that 

for the case t = k-1 this lower limit is attained. For this 

case we have U = k and using Corollary A. 8, we obtain the 

following theorem. 

Theorem 4.6 

k-1 
infimum  1 -  E  *U,) = 1 - (k - 1)*(-C*)f 

i=l 

(4-62)    ek,k-l ^ e* 

ZQ  n.n.d. 

where 

5* - (/n/2) log e* 

and 

8k-l,k s d * R0.tk-1])/(1 ' ^.{k])- 

i^roof; 

Since X.. ^0 (i « 1, 2,   ..., k-1) implies that Theorem 
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4.6 holds whan th« « in  (4.62)  la raplaead by >, w n««d only 

exhibit a parameter configuration for which  the lower  limit is 

attained.    Since t = k-1, we have 

i,j k 

Hence for the parameter configuration 

(4.63) 

pj[1]   =  1/(1 +   (k-l)/e*) 

p0[il   =  e*   P0I1] (i«2f3f...,k-l), 

we have X^ »0   (i = 1,   2,   ..., k-1)   and 

q =   (/n/2)   log 9* (i=l,2,...fk-l), 

which completes the proof of the theorem. 

■■■■■■■■■MMIHHMMtWMMBHHMMMHMMMBMa 
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5.    Predictor varlatas with unknown correlation« 

In this  chapter we consider the case where the correla- 

tion structure of the predictor variates of the   (k+l)-variate 

normal distribution is also unknown.    The £ n.n.d.   requirement 

does not reduce to a simple set of inequalities  for arbitrary 

k as did the  ZQ n.n.d.  requirement,  although the  additional 

parameters   p. .   (i ^ j;   irj  =  1,   2,   ...,  k)   make  the  I  n.n.d. 

requirement  less stringent. 

We consider only the case of t = 1.    For t >  1,   the cor- 

relation between the sample conditional variances becomes 

extremely messy.    Throughout this chapter, we use the notation 

given in Section 4.1.1. 

5.1    Probability of correct selection 

For t ■ 1, we have n = N-2.     We define pr^, , .,   to be the 

correlation between the predictor variates associated with 

poril  an<^ pOMlf  respectively and also define 

(5.x,      Wi1 - (1"pom"poii?;;o(ii:omptin3i)2 
ij (1 - po[ii,(1 - p0(jl) 

(li<jri,j»l,2f...,k). 
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(5.2) 
/n log(s2   /s2       ) 

^ (MIT 0. (k-i-t-ir 
2/1 - to ik 

(i»l,2,...,k-l), 

/E  log((l - P* ..)/(! - P' .J) 
(5.3)    Ti -  jiy : 0Jk]__(iKlf2 k.1)| 

2/1 - w Ik 

and wi - yi + Ti (i-1,2,...,k-l). 

Then the PCS (3.24) can be written as 

(5.4)    PCS « P^ < Ti    (i - 1, 2,   ...,  k-1)}. 

Using Corollary A.4 and (5.4), we can write the PCS^ 

(3.25) as 

(5.5) PCS
a " ♦k-l^l» T2' ••" Tk-l)' k-1' 

v/here ♦^„i is the (k-l)-variate standard normal distribution 

function with zero means, unit variances, and off-diagonal 

covariances given by 

(1 - a)  - w  + UJ ) 
(5.6)    to! . -   1K   J*        1J    (i^j;i,j-l,2,...,k-l) 

ij  2/(1 - ^ ^ '  wjk
) 

5.2 k - 2 

«fe first consider the case  (k -  2,  t ■ 1), where the PCS, 

(5.5)   reduces  to 
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(5.7) PCSa =  *(T1). 

Preliminary to  finding  the infimum of  this expression we 

prove a  lemma which gives  a simple representation of the 

E  n.n.d.   requirement  for k =  2. 

Lemra  5-1 

For k =  2 the requirement that I be n.n.d.   is equivalent 

to the  following inequalities: 

(5.8) 

oii  >  0 (1=0.1,2) 

P0ll] + P0[2] + P[ll[2) ' 2p0[l]P0[2]P[l][2] - 1' 

Proof: 

As before, this equivalence can be established by using 

the representation that a symmetric matrix is n.n.d. iff all 

principal minors are nonnegative. 

Theorem 5.1 

infimum PCS,. = *(T*), a 

15.9)   e12 > e* 

Z  n.n.d. 

where 

T* ■ (/n/2) log 9* 
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and 

912= (1- 0llU)/a-   PS[2j' 

Proof; 

Since w.- > 0, the theoreir. holds when the = of (5.9) is 

replaced by >,.  Hence we need only exhibit a parameter con- 

figuration satisfying the two restrictions of the theorem and 

for which u)12 = 0.  One such parameter configuration is given 

in (4.27). 

The asymptotic sample size is the same as given by 

(4.28).  It is also interesting to note that for any given 9*, 

the infimum can be attained for more than one parameter con- 

figuration, whereas in Theorem 4.1, for any given 0*, the 

infimum was attained for only one parameter configuration. 

5.3 k  >   2 

We have been unable to show that the conditions (Lemma 

B.2) required for the use of the Slepian inequality hold when 

the predictor variates are no longer assumed to be uncorre- 

lated.  Hence we use the Bonferroni inequality to obtain a 

lower bound on the PCSa.  Using (5.5) and (B.l) we have 

k-1 
(5.10)    PCSa > 1 - E *(-T.). 

.1=1 

In the following theorem we find the infimum of this 
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lower bound and use this result to obtain the corresponding 

approximation to the asymptotic sample size. 

Theorem 5.2 

k-1 
infimum   (1 -  E  *{T.)) = 1 - (k-l)*(-T*) 

i = l   1 

I.  n.n.d. 

where 

(/n/2) log 0* 

and 

ek-l,k = (i " P0[k-1])/(1 " *20[k]}' 

Proof: 

Since uj^ ^0 (i = 1, 2, ..., k) , we note that the theo- 

rem holds when the = of (5.11) is replaced by >.  Hence we 

need only exhibit a parameter configuration satisfying the two 

restrictions of the theorem and for which w., =0 (i = 
ik 

1, 2,   ...» k-1).  One such parameter configuration is given 

by 

dd 
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pOUJ " /1/(1 + e*) {i=lr2,...,k-l) 

(5.12) 

po[k] - /e*/{1 + e*) 

liltj] 
(i^j;i,j=l,2,...,k-l) 

P[iJ[k] (i=l,2,...,k-l) 

The restriction 0. . k > 6* and ID.. =0 (i « 1» 2, ..., 

k-1) follow directly-  To prove the existence of a nonnegative 

definite covariance matrix corresponding to this configura- 

tion, we assume without loss of generality that the predictor 

vnrial.os are ordered according to increasing PQJ» SO that x. 

la the variate associated with Pnm* 

Wo use the result (e.g., Anderson [2]) that a k + 1 by 

k ♦ 1 symmetric matrix £ is n.n.d. if there exists a k + 1 by 

r matrix A, where r < k + 1 is the rank of Z,   such that 

T »•• AEA' and T is positive definite. 

For our problem, r = 2 and we have 

(5.13) 
10 0 0. . , , 0 

0 10 0. . . , 0 

so that 

mmt^am 



(5.14)    T - 

/i/(i+e*) 
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/i/d+e*) 

Since 6* > 1, we have inunedlately that the principal 

minors of T are positive.  Hence T is positive definite, and 

the proof is complete. 

Setting the r.h.s. of (5.11) equal to P*, we obtain an 

approximation to the asymptotic sample size 

(5.15)   /n - -2«-|((l - P*)/(k - l))/log 0*. 

■MMHHMiM^ - 



6.  Directions for future research 

Several interesting problems are suggested by the results 

of this thesis.  We pose some of these problems in this 

section. 

Throughout Part TI we used the Bonferroni and Slepian 

inequalities to find lower bounds on the PCSa and then from 

these lower bounds we obtained approximations to the sample 

size.  It would be interesting to compare these lower bounds 

on the PCS  with approximations of the PCS  (obtained by a a 

numerical integration) to get some idea of the "efficiency" of 

the inequalities in the problems we have considered.  Of par- 

ticular interest would be a comparison of the infimum (ob- 

tained by numerical search techniques) of this approximation 

of the PCS over the region of preference for a correct selec- 

tion with the analytical results obtained from the 

inequalities. 

A simpler problem which is also of interest is a compari- 

son of the lower limit given in Theorem 4.3 with the infimum 

(obtained by numerical search techniques) of the lower bound 

of Theorem 4.2. 

All of the results in Part II have been obtained using 

asymptotic distribution theory. It would be interesting to 

compare the PCSa obtained from this theory with Monte Carlo 

estimates of the PCS, Of particular interest is the 
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comparison of these estimates of the PCS with the PCS^. as a 
el 

function N and 9*, when the parameters are in the LFC. 

The sensitivity of the results of this thesis to the 

assumption that the distribution of (x0, x,, ..., x.) is 

multivariate normal is another problem that could be studied 

using Monte Carlo techniques. 

The results of Sections 4.2 and 5.3 could be strengthened 

if the Slepicn inequality could be used in place of the 

Bonferroni inequality.  Although the conditions required for 

the Slepian inequality (Appendix B) appear to be satisfied for 

these more general cases, we have been unable to prove this 

analytically.  The method employed in Section 4.4.4 to obtain 

this result appears to be too complicated and messy for these 

more general cases and hence a new approach is needed. 

An obvious but seemingly difficult problem is the exten- 

sion of the results of Chapter 5 for t = 1 to arbitrary t or 

at least to t = 2.  The major difficulty here is the compli- 

cated nature of covariances of the sample conditional 

variances. 

In all of the problem formulations we have considered in 

this thesis, the value of t was fixed prior to experimenta- 

tion.  In some situations it might be more reasonable to 

allow the value of t to be determined on the basis of the 

values of the observations.  There are a number of ways in 
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which this new problem could be formulated.  However, it ap- 

pears that the same difficulties encountered in the formula- 

tions considered in this thesis would also be encountered in 

these new formulations. 
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Appendix A 

Asymptotic joint distributions of ehe 

sample conditional variances 

In this appendix, we find the asymptotic joint distribu- 

tions of the sample statistics which are used in the decision 

procedures of Part II. All of these asymptotic distributions 

are multivariate normal and hence are defined by their ex- 

pected values, variances, and covariances.  We will denote 

these moments of the asymptotic distribution by E , Var , and 

Cov , respectively.  (For each of the cases we consider, these 

quantities are equivalent to the corresponding asymptotic 

moments of the exact joint distribution, although this is, of 

course, not true in general.) 

These asymptotic joint distributions are derived from the 

following two theorems. Theorem A.l is an immediate result of 

Anderson's \2]   Theorem 4.2.5 and Theorem A.2 is a generaliza- 

tion of his Theorem 4.2.6 as given by Rao [44], Section 6a.2 

result iii. 

We let n = N-t-1 and define 

(A.l)    cij « 
vij/n,/oii0jj' 

where v.. is the ij^SL element of the cross product matrix 
*• j • 

given by (3.10). 

81 
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Theorem A.l 

The asymptotic   ((k+2) (k+l)/2)-variate normal distribution 

of  /n c..   (i ^ j»   i#j  ■ 0,   1,   ...,  k)   is determined by 

Ea 
(/" cii) - ( 1'   ^2\ 

Vara(/n c^)   » 1 + p?., 

and 

Cov   l/n CJ •,   /nc    )=D.   C-     +O.   D-   . ax i] rs'       Mirk3S       ^is^r 

Theorem A.2 

If /n u has a p-variate asymptotic normal distribution 

determined by 

E (/n u.) = b., 
a      x      x 

Vara(/n ui) = a^, 

Cov (*^üu.f /nu.) »a.., a    i     j    ij 

and w « f(u)   is  a vector-valued function of  the p-vector u 

such that each element of w is totally differentiable,   then 

/n w has an asymptotic multivariate normal distribution 

determined by 
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Ea(/n wi)   =  fiCb), 

Var   (/n w.)   » h.   A hi , 

and 

Cov   (/nw.,   /nw.)   =h.   Ah', 
a i ] —i       —3 

where f•   is  the i— component of  fr  A is the p by p covariance 

matrix of u,  and the hi   are p-vectors with elements given by 

hij " 3fi/3ujlu=b (j=l,2,...,p). 

A.l    t -  1 

In this section we find the asymptotic joint distribution 

of the 

(A.2)    y! » /K(log(sJ>(1)) - log(s^ (k.i+1))) 

(i=l,2,. . . fk-l) . 

To obtain this result, we first find the joint asymptotic dis- 

tribution of the si 1.    Using the notation of the last sec- 

tion, we have 

(A-3)    8o.i - Ooo(coo - ^i^ii^ 

Applying Theorem A.2 to Theorem A.l and (A.3) we obtain 

the asymptotic distribution of the /n si .. 
Ü • X 
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Corollary A.l 

The asymptotic k-variate normal distribution of the 

/n si! . is determined by 

V^O.i' ^oo'1" "Oi'' 

Vara(/n sö.i> " ^O11 " "Oi'2' 

and 

Cova(^ a0.i'   /n ^.j) " 

2ooo{1 - p2oi -  P0j + PoiPojPij)2   (i^). 

Applying Theorem A.2 to this result,  we obtain the asymptotic 

joint distribution of the /n log si   .. 

Corollary A.2 

The asymptotic k-variate normal distribution of the 

•n log si . is determined by 

Ea(/n log P^.) = log a00(l - pj.) , 

Vara(/n log s^^) = 2, 

and 
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«5 

Cova(/n log SQ.!»   ^n log sj   .)   = 

2(1 - poi- p0i + poipoipii)2 

(i^j) 

From this result using the notation of Section 3.4 we obtain 

the corresponding result for the /n log s* .. . 

Corollary A.3 

The asymptotic k-variate normal distribution of the 

/n log SQ ,.v is determined by 

Ea(/n log sj#(k_i+1)) = log(o00(l - P2
0[i])) , 

and 

Vara(^log B^^^)  = 2, 

Cova(/K log 8ji(k_i+1),  /n log s^ {k.j+1))   - 2^. 

(i^j), 

where 

(1 -  pz -  pz        + p p p ) 

1 "   p0[i])(1 "  ^[^ 

and the Pfiir^i are defined in Section 5.1. 

Using this result we again apply Theorem A. 2 to obtain 
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the following corollary which is used in Section 5.1 to ex- 

press the PCS_ in terms of a standard multivariate normal 

distribution function. 

Corollary A.4 

The asymptotic (k-1)-variate normal distribution of the 

^  lo9(80 m/s0 (k-i+l)) y. «  o.^i; o. (K I+JJ      (i-i,2,...,k-l) 
2/1 - Wik 

is determined by 

Ea(yi) » ^"i-^i]^1-^)*]" 
2/1 " -ik 

Vara(yi) » 1, 

and 

Cov (y. , y.) = u)' (i^j) , 

where 

w! 
(1 - U)   - ui,, +(*)._,) 
 ^   3^  LL (i^j) . 

13    2/(1- wik)(1- v 

For the case of uncorrelated predictor variates 

p[il[i] " 0 ^ ^ 1'   i'^ = 1' 2' *'*' k>' and we have the 

following corollary which is used in Section 4.1.2 to give an 



87 

•xprcaslon for the PCSa (4.20). 

Corollary A.4a 

The asymptotic (k-1) -variate distribution of the 

/n log is2   n)/Bl   (k.i+1)) 
(A.4)     y. u.dj  Q.U i-H)        (i=lf2,...,k-l) 

2/1 - ^ik 

is determined by 

and 

where 

and 

E  (yi)  _     
2/1 - nk 

var^y^ = 1 

Cova(yi, y^) = y]. (iffj) , 

(1 " "r „ " "f ,. + ''• •' 
3  2/(1 - Yi)c)(l - yjk) 
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A.2 t >  1,   uncorrelated predictor variates 

In this section we find the asymptotic joint distribution 

of the sample conditional variances, each of which is based on 

t uncorrelated predictor variates. Again our objective is to 

find the joint distribution of the y! (A. 2), and we proceed in 

a manner similar to that used in the previous section by first 

finding the asymptotic joint distribution of the si! 

The following corollary is obtained using Theorems A.l 

and A. 2, after writing the si       in terms of the c^^ in a 

ner similar to that of (A.3).  The expressions for the s2 

man- 

O.a 

are,  of course,   considerably more  complicated than   (A. 3). 

Corollary A.5 

The asymptotic U-variate normal distribution of the 

/n si      is determined by 0. a 

E (/n s2  ) = a  (1 - R2  ) 
a    O.a    00     O.a 

Vara(/n *0^   =  2o00(1  "  R0.a)2' 

and 

Cova{/n s20.a'   /n SQ.*"*   =  2ö00(1 "  R0.a*)Z       ^^^ ' 

where a*,  u  ,   and R^    A are defined in Section 4.2.1. 

We apply Theorem A.2 to this  result to obtain the 

following: 
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Corollary A. 6 

The asymptotic U-variate normal distribution of the 

/n log si      is determined by ^     O.a * 

Ea(^lo's0.a,   =lo«<o00(1-E0.a>)' 

vara(/K log s5_a)  = 2, 

and 

Cova(/n log s*<a,   /n log s^a„)   = 

2(1      R0.a*)2 

^ '  *0.a"1 " S0.a") 
(o^an) 

From this result using the notation of Section A.2.1, we 

obtain the corresponding result for the  /n  log  si   ,.. . 

Corollary A« 7 

The asymptotic U-variate distribution of the /n log si   ,-^ 

is determined by 

Ea(^10^ ^.(i))   = lo^o00(1 " RS.ti]n' 

Vara(/K log s^(i))   = 2, 

and 

Cova(^n  log  8^(i),   /n  log SQ.CJ))   
=  2Xij (i^J) » 
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(1   Z     0^ 
xii ' a - K

2 wi - ffz—r ^^ 

and the summation notation is defined in Section 4.2.1. 

Using this result, we again apply Theorem A.2 to obtain 

the following corollary, which is used in Section 4.2.2 to ex- 

press the PCSa (4.58) in terms of a standard multivariate 

normal distribution function. 

Corollary A.8 

The  asymptotic   (U-l)-variate  normal distribution of the 

/n log(s^   .,^/s«   ,,    .   ,.) 
(A.5) y.   -        O.d)7   (Mk-^jl),. iimlt2 u^j 

2/r^T^ 

is determined by 

log((l -  R^   „J/d - R^   ...)) 
Ea(yi) = o^ij O^ÜL 

2/1  -  X., 

Va^iy.)   =  1, 

and 

Cov   (y   ,  y  )   =  X' (i^j) , 
a    i    •] i] 

where 
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Xij 
ik        ]k        i] 

2/(1 -   X.v)(l -  X.,,) lik jk' 

(i*j). 

J 



Appendix B 

The Bonferroni and the Slepian inequalities 

After stati.~ 'J the Bonfer1:oni and the Slepian inequalities 

as lemmas, we use each of them to obtain lower bounds on 

multivariate normal probabilities. These results are used in 

Part II to give lower bounds on the exp~essions for the PCSa. 

First we give the Bonferroni inequality (e.g., Feller 

[18] 1 P• 100) o 

Lemma B.l 

Let A1 , A2' ••• I Ap denote a sequence of events and let 

A' i denote the complement of the event A
1

• Then 

p p 
P{ V Ai} < t P{Ai} -i•l i•l 

and hence 

p p 
P{ n A.} • 1 - P{ V A'} 

i•l 
1 

i•l 
i 

p 
> 1 - t {A'} - i i•l 

If we define the events 

(i•l,2,. • • ,p) 1 
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then by this lemma, we have 

P 
(B.l)    *(*»,, a,, ..., a^) > 1 - Z     (1 - *(a.)), 

where, as before, * denotes a standard multivariate normal 

distribution function having zero means and unit variances. 

The following lemma is due to Slepian [48]. 

Lemma B. 2 

Let ♦     and  *    denote p-variate normal distribution  func- 
P P 

tions with  zero expectations  and nonnegative definite  covari- 

ance matrices  given by  (a). .}   and  {<. .}  respectively.     If 

«*),.!  ^Ki-i (i^j;i,j=l,2,. .. ,p) 'ij  - ^ij 

and 

^ii =  Kii (1=1,2,...fp) , 

then 

*   (a   ,   a  ,   ...,   a  )   >   *. (a   ,   a  ,   ...,   a  ) piz p    —    piz p 

Using this lemma, we have 

p 
(B.2)     «^(a. , a_, ... , a ) >  IT 

P  1  2       P * i=1 

whenever 
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ü)j^ ■  1 (i=l,2,... ^p) 

and 

Wj.   >  0 (i^j;i,j=lf2,...,p) 

In the following  lemma, we show that the Slepian in- 

equality   (when its  assumptions are satisfied)   gives a better 

bound than does  the  Bonferroni inequality. 

Lemma B.3 

P P 
(B.3) n    Ma.)   >  1  -     I     (l-*(ai)) 

i=l i=l 

Proof; 

This result follows directly from the Bonferroni in- 

equality by letting a,, a-, ..., a be a sequence of events 

and denoting the probability of the event a. by *(a.). 
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Appendix C 

A numerical comparison of the Bonferroni 

and the Slepian inequalities 

In this appendix we study the efficiency of the Bonfer- 

roni and the Slepian inequalities by using each of them to 

approximate the sample size for a problem in which the exact 

sample size is known.  The problem is that of selecting the 

univariate normal population with the largest population mean, 

when each of the populations has a common known variance (o2). 

The PCS for this problem car be expressed (Bechhofer [5]) in 

terms of a (k-l)-variate standard normal distribution function 

with zero means, unit variances, and off-diagonal covariances 

of 1/2. 

Using the Bonferroni and the Slepian inequalities to give 

lower bounds on this PCS expression, we obtain two conserva- 

tive approximations to the sample size denoted by NB and Ng, 

respectively, where 

(C.I)     ^B - 2(ö/6*)*-
1
({1 - P*)/(k - 1)), 

{C.2)     ^s » 2(o/6*)*'
1(P*1/(k~1)) 

and {6*, PM are the preassigned constants. 

The exact sample size N can be computed by 

95 
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(C.3)     /N = (o/6*)d(P*, k) , 

where the values of d are given in Table 1 of Bechhofer I5j. 

The values of NB/N and Ns/N are given in Table C.l or 

k = 3, 6, 9 and P* values ranging from .5 to .999. 

For high P* (P* >, .99), both of the inequalities provide 

good approximations to the exact sample size (within 5% for 

k ^ 9), ana the NB is only slightly larger than Ns. 

For P* < .9, neither of the inequalities provides a good 

approximation to the sample size (NB and Ns are both at least 

15% greater than N for the values of k considered), and NB/N 

is considerably larger than Ng/N. 

For .9 4 P* < .99, the Slepian inequality provides a 

reasonable approximation when k is not too large, but the 

approximation provided by the Bonferroni inequality is not as 

good. 
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Table C.l 

A Comparison of Sample approximations Derived from 

the Bonferroni and the Slepian Inequalities 

with the Exact Requirements for the 

Problem of Ranking Normal Means 

k = 

P* NB/N     Ng/N      NB/N     Ng/N Ng/N Ng/N 

5 2.93529 1.91768 2.47320 1.91914 2.35754 1.92193 

6 1.80715 1.45038 1.85936 1.58701 1.85087 1.62104 

7 1.40178 1.25527 1.51766 1.38337 1.54029 1.42128 

,8 1.20335 1.14557 1.30124 1.24123 1.32900 1.27371 

9 1.08838 1.07172 1.14913 1.12988 1.17077 1.15237 

95 1.04652 1.04070 1.08496 1.07732 1.10037 1.09340 

99 1.01444 1.01376 1.02948 1.02857 1.03660 1.03568 

995 1.00941 1.00912 1.01980 1.01941 1.02500 1.02460 

999 1.00381 1.00376 1.00846 1.00839 1.01101 1.01089 
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